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ABSTRACT 
 

A library of thirteen new quinazoline-based Schiff bases was synthesized by simple, straightforward 

documented chemical procedures. Their skeletal structure was confirmed by IR, NMR, MS, and 

elemental analyses. The final compounds were also screened for their activities against eight selected 

microbial strains (two gram-positive and two gram-negative bacteria in addition to four fungal strains). 

Nine out of the thirteen tested compounds showed remarkable antimicrobial activities. However, six 

compounds, namely 7, 10, 13, 15, 16 and 18, showed antibacterial and antifungal activities, while 

compounds 9, 14 and 17 were devoid of antifungal and showed only antibacterial activities. The best 

activity was obtained by compounds 10 and 15, which were against Bacillus subtilis. The best MIC (1.90 

µg/ml) and (3.9 µg/ml) were obtained by compound 10 against Bacillus subtilis and Staphylococcus 

aureus, respectively. Aspergillus fumigatus and Syncephalastrum racemosum were the most sensitive 

filamentous fungi, where compound 10 inhibited their growth at MIC (15.63 and 62.50 µg/ml), 

respectively. 
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1.0 Introduction 

 

Hospital infection is a major health problem 

that concerns the medical community around 

the world, as it makes the management of such 

diseases more precarious. It was estimated that 

for every 100 patients in acute care hospitals, 

seven patients in high-income countries and 

fifteen in low and middle-income countries 

may catch at least one health care-associated 

infection while receiving health care for 

another condition. On average, one out of ten 

affected patients will die from such infection. 

Therefore, there is a critical need for new 

effective entities (1, 2). Infections initiated by 

antibiotic resistant strains continue to 

challenge the global medical community, as 

indicated by the higher rate of prescription and 

abuse of antibiotics compared to other 

medications (3-5). It became well known that 

treatment failures can occur not only through 

traditional microbial antibiotic resistance 

mechanisms but also through recent less 

defined ones, mainly those developed by 

microbes in response to their quorum sensing 

systems and biofilm machinery (6, 7). More 

recent work in this respect has focused on the 

evaluation of the clinical influence of 

antibiotic resistance on the ideal antibiotic 

choices for treatment, in addition to alternative 

strategies to combat such serious problems (8-

10). 

Over the last few decades, significant 

developments have been made in many areas 

of the design and development of new 

molecules to meet the pressing need for new 

medication (11-14). However, these efforts 

were hampered by a number of problems 

which still remain and the therapeutic 

potential has been compromised by the 

developed toxicity and low safety profile (15-

17). 

Quinazoline-containing compounds form 

an important class of synthetic products and 

represent an attractive scaffold for the design 

of small molecules of diverse biological 

effects. They have attracted interest over the 

past years, notably as tyrosine kinase as well 

as carbonic anhydrase inhibitors as potential 

chemotherapeutic agents (18-20). On the other 

hand, the antimicrobial activity of nitro-

containing molecules is one of the widest 

effects observed, not only in human or 

veterinary medicines, but also in developing 

new agents with such aims (21-23). The same 

could be found for quinazoline derivatives, 

which display a wide diversity of enzyme 

inhibitory activity, and so many researchers 

expected them to be useful for patients with 

acquired immune deficiency syndrome 

(AIDS), cancer chemotherapy, and organ 

transplantation. Recently, it was discovered 

that quinazoline-sulfonamide scaffold 

furnishes a new class of B-cell lymphoma 

2(Bcl-2) family inhibitors with low nano-

molar activity. Some of these derivatives 

exhibited sub-micromolar in human small-cell 

lung carcinoma. It was the first successful 

quinazoline sulfonamide core as an effective 

antitumor agent (24-28). 

In addition, Schiff bases have a sound 

pharmacological impact in different areas of 

medical applications. We decided to 

synthesize certain new quinazoline molecules 

equipped with this functionality by simple 

condensation of 3-amino-2-methyl-3H-

quinaolin-4-one with some selected aromatic 

aldehydes for evaluation as potential 

antimicrobial and antifungal agents in addition 

to studying their preliminary safety through 

liver and kidney function tests (29-31). 

 

2.0 Materials and Methods 

 

2.1 Chemistry 

2.1.1.1 Synthesis of N-(4-nitrobenzoyl)- 5-

iodoanthranilic acid 3 (32-35). 

     4-Nitrobenzoyl chloride 2 (1.85 g, 0.05 

mol) was added dropwise to a stirred solution  
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2.1.1 Scheme 1 

 
 

of 5-iodoanthranilic 1 (6.85 g, 0.05 mol) and 

triethylamine (2 ml) in dichloromethane (70 

ml) and the reaction mixture was stirred at 

room temperature for 2 hours. The separated 

solid was filtered, washed several times with 

water, dried, and crystallized from ethanol. 

 

2.1.1.2 2-(4-Nitrophenyl)-4H-6-iodo-3,1-

benzoxazin-4-one 4 (32-35). 

     A mixture of N-(4-nitrobenzoyl)- 5-

iodoanthranilic acid 3 (8.58 g, 0.03 mol) and 

acetic anhydride (7.5 g, 0.07 mol) was heated 

under reflux for 3 hours. The solvent was 

removed under reduced pressure. The residue 

was triturated with water. The separated solid 

was collected by filtration, washed with water, 

dried and crystallized from ethanol.  

     Yield percentages, melting points, 

molecular formulae and micro-analytical data 

are shown. 

 

2.1.1.3 2-(4-Nitrophenyl)-3-amino-3,4-

dihydro-6-iodoquinazolin-4-one 5 (32-35). 

    This compound was prepared by the 

following three methods: 

Method A 

     A mixture of 2-(4-nitrophenyl)-6-iodo-4H-

3,1-benzoxazin-4-one 1 (0.804 g, 0.003 mol) 

and 98 % hydrazine hydrate (0.6 g, 0.018 mol), 

in ethanol (10 ml) was heated under reflux for 

10 hours. The reaction mixture was cooled, 

and the separated solid was filtered and dried. 

The solid obtained was separated on a column 

using chloroform as an eluent to afford 

compound 5 in 15 % yields. 

 

Method B 

     2-(4-nitrophenyl)-6-iodo-4H-3,1-

benzoxazin-4-one 1 (0.804 g, 0.003 mol) and 

98 % hydrazine hydrate (0.6 g, 0.018 mol), in 

n-butanol (10 ml) was heated under reflux for 

10 hours. The reaction mixture was cooled, 

and the separated solid was filtered and dried. 

The solid obtained was separated on a column 

using chloroform as an eluent to afford 

compound 5 in 30 % yields. 

 

Method C 

     2-(4-nitrophenyl)-6-iodo-4H-3,1-

benzoxazin-4-one 1 (0.804 g, 0.003 mol) and 
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98 % hydrazine hydrate (0.6 g, 0.018 mol) 

were heated under reflux for 3 hours. On 

cooling, the separated solid was filtered, 

washed with water and crystallized from 

ethanol to afford 5 in 50 % yield. 

 

     M.P.: 240-2 °C. Yield: 71.0 %. IR, KBr, υ 

cm-1: 3350, 3300 (NH2), 1680 (C=O).  1H 

NMR (CDCl3, δ ppm): 5.7-5.8 (bs, 2H, NH2, 

D2O exchanged), and 7.4-8.5 (m, 7H, Ar-H). 
13C NMR: 120.6, 121.5, 123.9, 124.2, 127.9, 

128.6, 132.8, 134.1, 149.0, 153.8, 160.2 (Ar-

C), 164.1 (CO). MS m/z (Rel. Int.) 309 (M+, 

86.0). Anal. (C14H10IN4O3, 282.25) C, H, N. 

The product obtained by these methods has the 

same physical constants. 

 

2.1.1.4 2-(4-Nitrophenyl)-3-(arylideneamino)-3,4-

dihydro-6-iodoquinazolin-4-ones 6-18 (32-35). 

 

General procedure: 

     A mixture of 2-(4-nitrophenyl)-3-amino-

3,4-dihydro-6-iodoquinazolin-4-one 5 (0.408 

g, 0.001 mol) and the appropriate aldehyde 

(0.001 mol) in acetic acid (5 ml) was heated 

under reflux for 2 hours. On cooling, the 

separated solid was filtered, washed with 

water and crystallized from acetic acid. 

 

a. 2-(4-Nitrophenyl)-3-(benzylideneamino)-

3,4-dihydro-6-iodoquinazolin-4-one 6:   

     Yield, 87%; m.p. 195-197 ◦C; IR υ 1669 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 7.60-

8.51 (m, 12H, Ar), 9.11 (s, 1H, N=CH). 13C 

NMR: 92.0, 121.62. 121.7, 123.9, 124.2, 

127.9, 128.6, 128.8, 130.3, 132.8, 134.1, 138.4, 

139.9, 142.6, 149.0, 149.2, 163.2, 164.7 (CO). 

MS m/z (Rel. Int.) 496 (M+, 66.0). Anal. 

(C21H13IN4O3, 370.36) C, H, N. 

 

b. 2-(4-Nitrophenyl)-3-(4-

methylbenzylideneamino)-3,4-dihydro-6-

iodoquinazolin-4-one 7:  

     Yield, 87%; m.p. 133-135 ◦C. IR υ 1660 

(C=O) cm−1.  1H NMR (DMSO-d6): δ 2.34 (s, 

3H, CH3), 7.6-8.28 (m, 11H, Ar), 8.44 (s, 1H, 

N=CH). 13C NMR: 21.3, 92.8,  120.9, 121.4, 

122.1, 127.8, 128.2, 128.7, 129.4, 131.6, 132.5, 

134.1, 140.1, 141.7, 149.1, 152.0, 160.2, 164.4, 

165.2 (CO). MS m/z (Rel. Int.) 510 (M+, 38.0). 

Anal. (C22H15IN4O3) C, H, N. 

 

c. 3-((4-(Dimethylamino) 

benzylidene)amino)-6-iodo-2-(4-

nitrophenyl)quinazolin-4(3H)-one 8:  

     Yield, 52%; m.p. 200-202 ◦C. IR υ 1667 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 2.91 (s, 

6H, 2CH3), 6.66-7.87 (m, 11H, Ar), 8.32 (s, 

1H, N=CH). 13C NMR: 18.5, 91.7, 112.7, 

112.9, 119.3, 120.2, 121.7, 122.5, 128.6, 132.3, 

140.2, 150.5, 151.6, 152.2, 164.3, 164.67 

(CO). MS m/z (Rel. Int.) 539 (M+, 47.0). Anal. 

(C23H18IN5O3) C, H, N. 

 

d. 3-((2,4-Dichlorobenzylidene)amino)-6-

iodo-2-(4-nitrophenyl)quinazolin-4(3H)-one 

9:  

     Yield, 82%; m.p. 225-227 ◦C. IR υ 1662 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 7.19-

8.08 (m, 10H, Ar), 8.89 (s, 1H, N=CH). 13C 

NMR: 91.9, 120.8, 121.5, 122.2, 128.1, 128.2, 

128.5, 128.8, 129.9, 130.9, 132.8, 134.5, 135.4, 

140.8, 143.7, 152.6, 164.5, 165.31 (CO). MS 

m/z (Rel. Int.) 565 (M+2 + 4, 8.0), 563 (M+1 + 

21, 68.0), 561 (M+, 71.0). Anal. 

(C21H11ICl2N4O3) C, H, N. 

 

e. 3-((2-Hydroxybenzylidene)amino)-6-iodo-

2-(4-nitrophenyl)quinazolin-4(3H)-one 10:   

     Yield, 80%; m.p. 178-180 ◦C; IR υ 3385 

(OH), 1666 (C=O) cm−1. 1H NMR (DMSO-

d6): δ 5.28 (S, 1H, OH), 7.51-8.33 (m, 11H, 

Ar), 9.1 (s, 1H, N=CH). 13C NMR: 95.1, 119.6, 

120.9, 123.5, 124.0, 127.1, 128.6, 128.8, 130.5, 

132.4, 134.0, 138.2, 139.7, 142.0, 146.2, 148.2, 

163.2, 163.9 (CO). MS m/z (Rel. Int.) 512 (M+, 

80.0). Anal. (C21H13IN4O4) C, H, N. 
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f. 3-((4-Hydroxybenzylidene)amino)-6-iodo-

2-(4-nitrophenyl)quinazolin-4(3H)-one 10 

11:  

     Yield, 79%; m.p. 214-216 ◦C. IR υ 3394 

(OH), 1668 (C=O) cm−1. 1H NMR (DMSO-

d6): δ 5.91 (s, 1H, OH), 7.62-7.35 (m, 11H, Ar). 

8.72 (s, 1H, N=CH). 13C NMR: 92.0, 116.9, 

119.7, 120.0, 120.3, 120.5, 122.8, 124.5, 128.4, 

128.7, 129.5, 132.5, 140.4, 149.4, 152.6, 159.6, 

164.3, 164.2 (CO). MS m/z (Rel. Int.) 386 (M+, 

91.0). Anal. (C21H13IN4O4) C, H, N. 

 

g. 3-((2,4-Dihydroxybenzylidene)amino)-6-

iodo-2-(4-nitrophenyl)quinazolin-4(3H)-one 

10 12:  

     Yield, 87%; m.p. 274-276 ◦C. IR υ 3382 

(2OH). 1668 (C=O) cm−1. 1H NMR (DMSO-

d6): δ 5.51 (s, 2H, 2OH), 6.68-7.81 (m, 10H, 

Ar), 8.87 (s, 1H, N=CH). 13C NMR: 55.9, 91.4, 

116.6, 119.4, 120.26, 120.5, 121.6, 122.17, 

127.0, 127.3, 128.56, 128.78, 132.60, 135.39, 

140.11, 143.7, 145.0, 148.8, 152.6, 164.4, 

165.1 (CO). MS m/z (Rel. Int.) 527 (M+, 53.0). 

Anal. (C21H13IN4O5) C, H, N. 

 

h. 3-((4-Hydroxy-3-

methoxybenzylidene)amino)-6-iodo-2-(4-

nitrophenyl)quinazolin-4(3H)-one 13: 

     Yield, 85%; m.p. 185-187 ◦C; IR υ 3402 

(OH), 1671 (C=O) cm−1. 1H NMR (DMSO-

d6): δ 3.83 (s, 3H, OCH3), 5.70 (S, 1H, OH), 

7.91-8.53 (m, 10H, Ar), 8.80 (s, 1H, N=CH). 
13C NMR: 55.6, 92.9, 118.4, 119.1, 119.7, 

120.3, 120.6, 120.7, 121.9, 122.7, 125.6, 128.5, 

128.7, 131.9, 132.5, 140.2, 144.8, 152.4, 157.8, 

164.4, 165.9 (CO). MS m/z (Rel. Int.) 542 (M+, 

91.0). Anal. (C22H15IN4O5) C, H, N. 

 

i. 3-((2-Methoxybenzylidene)amino)-6-iodo-

2-(4-nitrophenyl)quinazolin-4(3H)-one 14: 

     Yield, 87%; m.p. 145-147 ◦C. IR υ 1681 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 3.81 (s, 

3H, OCH3), 5.91-8.62 (m, 11H, Ar), 9.10 (s, 

1H, N=CH). 13C NMR: 55.64, 92.3, 108.9, 

112.9, 115.4, 119.5, 120.4, 120.5, 120.7, 122.4, 

122.5, 125.1, 128.6, 128.7, 128.7, 132.4, 140.6, 

148.3, 149.2, 149.7, 152.6, 164.4, 164.9 (CO). 

MS m/z (Rel. Int.) 526 (M+, 28.0). Anal. 

(C22H15IN4O4) C, H, N. 

 

j. 3-((4-Methoxybenzylidene)amino)-6-iodo-

2-(4-nitrophenyl)quinazolin-4(3H)-one 15: 

     Yield, 86%; m.p. 151-153 ◦C. IR υ 1664 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 3.60 (s, 

3H, OCH3). 6.69-7.78 (m, 11H, Ar), 8.41 (s, 

1H, N=CH). 13C NMR: 55.91, 94.1, 114.6, 

119.3, 120.8, 122.1, 126.9, 128.5, 128.7, 128.9, 

131.5, 132.5, 134.7, 142.4, 148.9, 152.6, 160.3, 

162.7, 165.0 (CO). MS m/z (Rel. Int.) 527 (M+, 

65.0). Anal. (C22H15IN4O4) C, H, N. 

 

k. 3-((2,4,5-Trimethoxybenzylidene) 

amino)-6-iodo-2-(4-nitrophenyl)quinazolin-

4(3H)-one 16:  

     Yield, 80%; m.p. 227-229 ◦C. IR υ 1675 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 3.39 (s, 

9H, 3OCH3), 7.71-8.30 (m, 9H, Ar), 8.39 (s, 

1H, N=CH). 13C NMR: 55.9, 92.2, 108.1, 

112.9, 119.7, 120.3, 121.3, 122.5, 125.2, 128.7, 

128.9, 129.7, 132.5, 139.2, 140.6, 149.9, 152.3, 

153.8, 164.6, 165.1 (CO). MS m/z (Rel. Int.) 

543 (M+, 83.0). Anal. (C21H13IN4O6) C, H, N. 

 

l. 3-((2,4,6-Trimethoxybenzylidene)amino)-

6-iodo-2-(4-nitrophenyl)quinazolin-4(3H)-

one 17:  

     Yield, 87%; m.p. 215-217 ◦C. IR υ 1672 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 3.95 (s, 

9H, 3 OCH3), 7.55-7.9 (m, 9H, Ar), 8.32 (s, 

1H, N=CH). 13C NMR: 92.05 119.36, 120.3, 

122.7, 128.4, 128.5, 132.4, 134.5, 135.2, 136.0, 

140.2, 143.6, 144.9, 152.2, 152.6, 153.6, 164.4, 

164.7 (CO). MS m/z (Rel. Int.) 543 (M+, 65.0). 

Anal. (C21H13IN4O6) C, H, N. 

 

m. 3-((3,4,5-Trimethoxybenzylidene)amino)-

6-iodo-2-(4-nitrophenyl)quinazolin-4(3H)-

one 18:  

     Yield, 85%; m.p. 217-219 ◦C. IR υ 1663 

(C=O) cm−1. 1H NMR (DMSO-d6): δ 3.92 (s, 
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9H, 3OCH3), 7.56-7.80 (m, 3H, Ar), 8.30 (s, 

1H, N=CH). 13C NMR: 94.6, 119.6, 120.1, 

122.5, 128.1, 128.6, 131.8, 133.9, 136.1, 137.3, 

141.5, 144.2, 145.4, 153.1, 154.7, 155.1, 162.8, 

163.5 (CO). MS m/z (Rel. Int.) 544 (M+, 73.0). 

Anal. (C21H13IN4O6) C, H, N. 

 

2.2 Antimicrobial screening 

 

Antimicrobial screening and determination of 

the minimum inhibitory concentration (MIC) 

of compounds was carried out using the disc 

diffusion method (15). Filter paper discs (5 

mm in diameter) were separately soaked in the 

solution of the compounds and at different 

concentrations (for determination of MIC) and 

transferred to the surface of the growth 

medium seeded with the test organism. After 

the incubation, the diameter of the inhibition 

zone around the discs was measured in 

millimetres (32-34). 

     Representatives of Gram-negative 

bacteria; Escherichia coli (RCMB 010052), 

Pseudomonas aeurginosa (RCMB 010043), 

and Gram-positive bacteria; Bacillus subtilis 

(RCMB 010067), Staphylococcus aureus 

(RCMB 010028) and unicellular fungi; 

Candida albicans (RCMB 05031), Geotricum 

candidum (RCMB 05097) and filamentous 

fungi; Aspergillus fumigatus (RCMB 02568), 

Syncephalastrum racemosum (RCMB 05922) 

were obtained from the Regional Center for 

Mycology and Biotechnology, Al-Azhar 

University, Cairo, Egypt and used as test 

organisms. 

 

3.0 Results and Discussion 

  

3.1 Chemistry 

     Reaction of anthranilic acid with 4-nitro 

benzoyl chloride in methylene chloride in the 

presence of triethylamine, as an acid 

scavenger, affords the corresponding N-

acylanthranilic acid (36-40). The later 

compound was cyclized by boiling with acetic 

anhydride to produce the benzoxazin-4-one 

derivative. Previous studies mentioned that the 

reaction of aliphatic amines with this lactone 

afforded the open diamide and not the 3-

substituted quinazolin-4-one compounds 

usually obtained when the same reaction 

conditions were applied with aromatic amines.  

     Our trials to obtain 3-amino-6-iodo-2-

methyl-3(H)-quinazolin-4-one, with 

considerable yield and purity, have failed in 

this study. The reaction was tried by prolonged 

heating in ethanol, pyridine, and n-butanol. In 

all of these cases, the separated solid proved to 

be a mixture consisting of different ratios from 

both the 3-amino and the diamide derivatives 

(41-46). However, boiling the 3H-

benzoxazin-4-one with 100% hydrazine 

without solvent afforded the required 3-amino 

derivative with almost 85 % yield. The IR 

spectrum of this compound indicated the 

presence of a doublet band corresponding to 

the NH2 absorption band at 3287, 3251 cm-1. 

The NMR spectrum showed the NH2 protons 

at δ 5.6 ppm and the carbonyl carbon at 160.5 

ppm.  

     Reaction of the obtained amine with certain 

aromatic aldehydes afforded the 

corresponding arylidenes derivatives (1-13), 

and their structure was confirmed by 

elemental analyses and spectral data. 

Generally, the spectra of these compounds 

showed the absence of an NH absorption band 

from the IR spectra. The 1H NMR spectra 

showed the olefenic proton at δ value between 

10.0-11.0 ppm. The 13C spectra showed the 

exact number of carbon atoms at the expected  
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Table 1: Antimicrobial activities of compounds 6-18 

 

Test 

Organism 

Diameter of inhibition zone (mm) 

6 7 8 9 10 11 12 13 14 15 16 17 18 Standard 

Antibiotic 

Bacteria: 

Gram-Negative 

Escherichia coli 

00.0 11.1± 

0.44 

00.0 12.6± 

0.44 

18.1± 

0.28 

00.0 00.0 13.9± 

0.25 

00.0 14.0± 

0.25 

13.1± 

0.23 

12.6± 

0.44 

14.2± 

0.63 

Gentamicin 

22.3± 

0.18 

Pseudomonas 

aeurginosa 

00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 17.3± 

0.15 

Gram-Positive 

Bacillus subtilis 

00.0 13.4± 

0.44 

00.0 15.7± 

0.63 

21.4± 

0.63 

00.0 00.0 16.3± 

0.44 

12.3± 

0.58 

19.9± 

0.58 

18.3± 

0.53 

15.7± 

0.63 

18.9± 

0.37 

Ampicillin 

32.4±0.10 

Staphylococcus 

aureus 

00.0 11.2± 

0.25 

00.0 12.6± 

0.58 

20.3± 

0.37 

00.0 00.0 14.2± 

0.58 

10.2± 

0.44 

17.2± 

0.37 

14.7± 

0.44 

13.2± 

0.58 

16.2±0

.58 

27.4± 

0.18 

Fungi: 

Unicellular 

Candida albicans 

00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 Amphotericin B 

19.8± 

0.20 

Geotricum 

candidum 

00.0 12.5± 

0.37 

00.0 00.0 18.3± 

0.25 

00.0 00.0 13.4± 

0.58 

00.0 14.6± 

0.44 

14.3± 

0.53 

00.0 15.9±0

.44 

28.7± 

0.20 

Filamentous 

Aspergillus 

fumigatus 

00.0 10.6± 

0.37 

00.0 00.0 16.3± 

0.25 

00.0 00.0 11.9± 

0.37 

00.0 11.3± 

0.44 

12.6± 

0.53 

00.0 13.1±0

.25 

23.7± 

0.10 

Syncephalastrum 

racemosum 

00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 19.7± 

0.20 
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Table 2: The Minimum inhibitory concentration (MIC) of compounds 7, 10, 13, 15, 16 and 18 

 

Test 

Organism 

Minimum Inhibitory Concentration (µg/mL) 

7 10 13 15 16 18 Standard 

Antibiotics 

Bacteria: 

Gram-Negative 

Escherichia  coli 

500.00 015.63 500.00 500.00 500.00 125.00 Gentamicin 

000.98 

Pseudomonas 

aeurginosa 

000.00 000.00 000.00 000.00 000.00 000.00 031.25 

Gram-Positive 

Bacillus  subtilis 

125.00 001.95 062.50 003.90 015.63 007.81 Ampicillin 

00.007 

Staphylococcus 

aureus 

500.00 003.90 125.00 031.25 125.00 062.50 000.06 

Fungi: 

Unicellular 

Candida albicans 

000.00 000.00 000.00 000.00 000.00 000.00 Amphotericin B 

003.90 

Geotricum 

candidum 

500.00 015.63 500.00 125.00 125.00 062.50 000.03 

Filamentous 

Aspergillus 

fumigatus 

500.00 062.50 500.00 500.00 500.00 500.00 000.24 

Syncephalastrum 

racemosum 

000.00 000.00 000.00 000.00 000.00 000.00 003.90 
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δ values, that were in agreement with the 

proposed structures (47-50). 

 

3.2. Antimicrobial Testing 

 

     The antimicrobial activities of the current 

series showed that 9 out of 13 compounds have 

remarkable activities against the investigated test 

organisms (Table 1). However, six compounds, 

namely 7, 10, 13, 15, 16, and 18 showed 

antibacterial and antifungal activities, while 9, 14 

and 17 showed only antibacterial activity. The 

best activity (21.4±063) (19.9±0.58) was 

obtained against Bacillus subtilis by compounds 

10 and 15, respectively. On the other hand, 

compounds 6, 8, 11, and 12, showed no activity 

(32-34). 

     On the other hand, the best minimum 

inhibitory concentrations (1.90 µg/ml) and (3.9 

µg/ml) were obtained by compound 10 against 

Bacillus subtilis and Staphylococcus aureus, 

respectively (Table 2). Also, compound 10 

showed the best MICs (15.63 and 62.50 µg/ml) 

against the filamentous fungi; Aspergillus 

fumigatus and Syncephalastrum racemosum, 

respectively. 

 

4.0 Conclusion 

 

     We synthesized certain focused series of new 

6-iodoquinazoline-based Schiff’s bases by 

simple chemical procedures. The obtained 

compounds were evaluated for their growth 

inhibitory activity against four selected fungal 

strains, two gram-positive bacterial strains and 

two gram-negative bacterial strains. Most of the 

synthesized compounds were promising as 

useful backbones for further derivatization and 

developing more effective antimicrobial and 

antifungal small molecules. 
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