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Abstract 
 
Screening of prostate cancer (PCa) by measuring prostate cancer antigen has proven beneficial 
in reducing the mortality and progression of prostate cancer. However, its level can be affected 
if patients are taking certain drugs and/or suffering from certain medical conditions, causing a 
false negative. This can lead to PCa being undetected, where when untreated can lead to 
metastatic prostate cancer (MPC). Hence, in this study, genetic differences between PCa and 
MPC were explored using bioinformatics approaches to predict potential biomarkers for MPC. 
The study was divided into two parts, where the first involves feature selection and principal 
component analysis to differentiate PCa and MPC based on mRNA gene expression. 
Additionally, top 20 mutated genes for MPC were determined using odds ratio (OR). In the 
second phase, a predictive model was built using outcome of the mRNA gene expression 
analysis. The results showed that the mRNA expression of 26 identified genes could 
differentiate between PCa and MPC. This was further corroborated by the predictive model, 
where a sensitivity and specificity of 0.616 and 0.017 respectively was achieved. While 
importance is placed on sensitivity over specificity, further improvements involving more data 
need to be made to increase the specificity rate. Additionally, genes such as PAG24, BOP1 and 
GRWD1 should be investigated further as both potential biomarkers as well as potential 
pathways in MPC progression, based on further protein-protein interaction analysis. OR and 
protein-protein interaction suggests that  androgen signalling pathway may crosstalk with NF-
κB signalling and breast cancer pathway. This preliminary study shows that bioinformatics 
approaches could aid in understanding MPC, which could lead to the discovery of novel 
targeted therapy and potential biomarkers. 
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1.0 INTRODUCTION 
 

According to the GLOBOCAN 2020 
report by the World Health Organisation 
(WHO), prostate cancer ranked third with 
7.3% in the number of new cancer-related 
cases in 2020 (1). Additionally, 3.8% of 
cancer-related deaths were attributed to 
prostate cancer (1). According to the 
Prostate Cancer Foundation, prostate 
cancer is the most common non-skin cancer 
in America affecting 1 in 8 males. In Asian 
countries, the number of prostate cancer 
cases has been steadily increasing 
throughout the years where initially the 
incidence was low (2).  

Androgens, which can either be 
testosterone or dihydrotestosterone (DHT) 
with the latter being the more abundant, are 
hormones that are responsible for the 
growth and function of the prostate gland3. 
In prostate cancer, the dysregulation of 
androgen signalling pathway leads to 
overproduction of androgens and/or 
overstimulation of androgen receptor, 
leading to the growth of prostate cancer 
cells (3). Hence, the treatment of prostate 
cancer involves androgen deprivation 
therapy (ADT), which suppresses the 
production of androgens or inhibiting 
androgen receptor (AR) (4). Prostate cancer 
is detected through blood test that measures 
the prostate-specific antigen (PSA) level 
where a high level leads to the diagnosis of 
prostate cancer. However, PSA test suffers 
from inaccuracies as its level can be 
affected by drugs and conditions such as 
prostatitis and benign prostate hyperplasia. 
This can lead to a missed diagnosis where 
if not addressed promptly could lead to 
metastatic prostate cancer (MPC), which 
has a low survival rate (4). Detection of 
MPC through imaging such as computed 
tomography (CT), positron-emission 
tomography (PET) and magnetic resonance 
imaging (MRI) is incomplete, further 
complicating the diagnosis of MPC4. 
Similar to primary prostate cancer, MPC is 
also treated with ADT, however, several 
studies have demonstrated that patients on 

long term ADT are at higher risk of stroke 
and vulnerable to cardiovascular adverse 
effects (5,6). These highlights the need to 
understand the genetics of MPC in the 
discovery of novel drugs as well as for 
diagnostic purposes. 

The characteristics of MPC were largely 
unknown until 150 metastatic biopsies were 
analysed through an international, multi-
institutional study. The study unveiled a 
defect in DNA repair mechanism in MPC 
where mutations in DNA repair genes e.g. 
BRCA2, ATM and BRCA1 were observed 
in 23% of the cases (7). These results were 
further corroborated by Pritchard et al., (8) 
with a larger cohort of 692 men. 11.8% of 
the cases exhibited germline mutation I 
DNA repair genes e.g. BRCA2, ATM, 
CHEK2, and BRCA. Furthermore, the 
mutations were not correlated with age or 
family history of prostate cancer (8). 
Several other studies have discovered 
potential genetic alterations in MPC e.g. 
TP53, PTEN and AR (7), however, therapy 
targeting those genes have not yet been 
shown to be clinically beneficial. 

Several studies involving the use of 
computational approaches have been 
employed to identify genes that are altered 
in MPC. Li et al., (9) employed the 
maximum relevance minimum redundancy 
(mRMR) method to discover surrogate 
genes for MPC by analysing microarray 
data of normal, primary prostate cancer and 
MPC tumours. The study identified four 
genes that could differentiate the three 
different phases, which are TUBB6, 
MYEF2, PARM1 and SLC25A22 (9). 
These genes are involved in cell 
communication, hormone-receptor mediated 
signaling, and transcription regulation, 
which may be responsible for the 
development of prostate cancer.  Xue et al., 
(10) performed an integrative analysis of 
transcription factor (TF) and microRNA 
expression profiles by employing Gaussian 
mixture modelling and network pruning. 
The study identified mutually exclusive 
transcriptional drivers, AR, HOXC6 and 
NKX2-2 (10). These gene together 
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dysregulate metastasis-related miRNAs in 
prostate cancer. Additionally, poor clinical 
outcome have been reported from the 
overexpression of TFs (10). Bello et al., 
(11) applied system-based modelling 
approach known as kinome regulatisation 
(KiR), which identified multitargeted 
kinase inhibitors that suppress castration-
resistant prostate cancer (CRPC). The two 
inhibitors identified, PP121 and SC-1 were 
later found to suppress the growth of CRPC 
in vitro and in vivo (11). Hence, the aim of 
this study is to explore the genetic 
differences between MPC and PCa, and 
consequently predict potential biomarkers 
for MPC through bioinformatic approaches 
using data obtained from public databases. 
 
 
 

2.0 Materials and Method 
 
2.1 Design of the study 
 

The design of the study is represented in 
Figure 1 below. The study is divided into 
two phases where the first involves the 
mining of mRNA expression of primary 
and metastatic prostate cancer (PCa and 
MPC respectively) data obtained from 
cBioPortal (12) through principal component 
analysis (PCA) and feature selection. Odds 
ratio was also conducted to analyse 
significantly mutated genes in MPC. The 
second phase of the study involves the 
building of prediction model based on the 
results of the PCA to validate whether 
mRNA gene expression profile can be used 
to differentiate between PCa and MPC.  

 

Figure 1. Design of the study where it is divided into two phases. The first phase involves the 
use of Principle Component Analysis on mRNA gene expression data, and Odds Ratio on 
mutated genes data. The second phase involves the building of a prediction model based on the 
result of mRNA gene expression from the first phase. 
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2.2 Dataset 
 

In this study, the data of prostate cancer 
patients was obtained from the cBioPortal 
database (https://www.cbioportal.org/). 
cBioPortal is an international public 
database that store and distribute functional 
genomic data that was summited by 
research community. In this study, four 
datasets of prostate cancer patient were 
chosen, which are the DKFZ cancer cell 
2018, SU2C/PCF Dream Team PNAS 
2019, MSKCC/DFCI Nature Genetics 
2018, and lastly from the MSKCC JCO 
Precis Oncol 2017. The breakdown of each 
datasets can be found in Table 1. Any 
duplicates were removed.  
 
2.3 Feature selection 

 
In this study, the Tree Based Feature 

Selection Method (TBSM) was employed 
as the feature selection method (17). To 
remove irrelevant or unimportant data, this 
method measures the impurity-based 
feature importance of each variable by 
using the concept of random forest 
algorithm. The degree of importance is 
based on how many samples are able to 
reach nodes against the total number of 
samples (17). The higher degree or 
percentage of feature importance, the 
higher the score. The nodes importance was 
calculated as such: 

 
𝑛𝑖! = 𝑤!𝐶! −	𝑤"#$%(!)𝐶"#$%(!) −
	𝑤()*+%(!)𝐶()*+%(!)   

Eq. 1 
 
where: 
 
𝑛𝑖1 = the nodes importance of node 1  
𝑤! = the weighted sample reaching node 1 
𝐶! indicate the impurity value of node 1. 
𝑙𝑒𝑓𝑡(1) and 𝑟𝑖𝑔ℎ𝑡(1) = branches node in 
the left and the right respectively.  
 
The importance of each feature on a 
decision tree is then calculated as: 
 

𝑓𝑖! =
∑ -)!!:#$%&	!	()*+,(	$#	-&.,/0&	+

∑ -)11∈.**	#$%&(
 Eq. 2 

 
where: 
 
fi1 = importance of feature i  
ni1 = the importance of node 1. 
Nik = the sum importance of all nodes 
 

Next, the value of feature importance is 
normalized to a value between 0 and 1, 
calculated as such: 

 
𝑛𝑜𝑟𝑚𝑓𝑖! =

$)!
∑ $)!3∈.**	-&.,/0&(

  Eq. 3 

 
normfii1 represents the normalized feature 
importance for i in tree 1. Next, the average 
of all the trees which is the final feature 
importance will be calculated. It is 
calculated by sum of the feature’s 
importance value on each tree and divided 
by the total number of trees (17): 
 
      𝑅𝐹𝑓𝑖)

∑ -.(/$)+!3∈.**	,0&((

0
  Eq. 4 

 
RFfii is the importance of feature i 
calculated from all trees in the Random 
Forest model and T is the total number of 
trees.  
 

Each feature will be assigned a value 
between 0 to  1 where a higher value 
indicates higher importance. The relative 
importance of a feature was calculated by 
comparing its value to the highest scoring 
feature as such (17):  

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒	) =
12$)+

12$)4.5
	× 100  Eq. 5 

 
Feature with the highest score will be 

assigned a value of 100%. Only features 
with a Relative Feature Importance score of 
30 and above were retained for further 
analysis.  
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Table 1. Dataset of MPC and PCa used in the study which includes their origin, data type and 
amount of data. 
 

Dataset Number of 
samples Type of data used References 

DKFZ cancer cell 
2018 324 

• Mutated genes 
• mRNA gene expression 13 

SU2C/PCF Dream 
Team PNAS 2019 444 

• Mutated genes 
• mRNA gene expression 14 

MSKCC/DFCI 
Nature Genetics 
2018 

1013 
• Mutated genes 

 15 

MSKCC JCO 
Precis Oncol 2017 504 

• Mutated gene 
 16 

 
 

 
2.4 Principal Component Analysis 

 
Principal component analysis (PCA) is a 

method of reducing the dimensionality of 
robust datasets, increasing its 
interpretability while preserving as much 
variability and minimizing information loss 
(18). This statistical technique creates new 
uncorrelated variables or principal 
components, that successively maximize 
variance. The PCA was performed using 
the scikit-learn package through the ‘PCA’ 
function in Python and plotted using the 
ggplot (19) package in RStudio (v1.4).  

Given a data matrix, X, of n × p, where 
n is the number of rows of instances and p 
is the number of features, the principal 
component for each variable, x, is 
calculated as the weighted average of the 
original variables. The matrix containing 
the principal components of the data is 
referred to as matrix Y and can thus be 
calculated as: 
 

           Y =W. X               Eq. 6 
   
where W is a matrix of coefficients that is 
obtained from the calculation of 
covariance, eigenvalues and eigenvector. 

Eigenvalues and eigenvectors are the linear 
algebra concepts that needed to be 
computed from the covariance matrix in 
order to determine the principal 
components of the data (20) : 
 

y ij =w1i x1j +w 2i x 2j+...+w pi x pj     
    Eq. 7 

 
The covariance between two variables, xi 
and xj can be calculated as: 
 
𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) = !

"#!
	∑ ,𝑥𝑖 −	𝑥𝑖- .(𝑥𝑗 − 𝑥𝚥- )"

$%!

     Eq. 8 
 

The eigenvalues and eigenvectors are 
then determined from the covariance 
matrix. The eigenvectors (principal 
components) determine the directions of the 
new feature space, and the eigenvalues 
determine their magnitude.  

 
2.5 Odds ratio 

 
Odds ratio (OR) measures the 

association between exposure and the 
outcome by comparing the odd of the 
outcome occurring depending on the 
presence or absence of certain exposure 
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(21). In this study, the mutated genes were 
represented as the exposure. Meanwhile, 
the outcome was either primary or 
metastatic prostate cancer. The odds ratio 
will then measure the frequency of the 
mutated genes in metastatic prostate cancer 
and primary prostate cancer. Out of 2485 
mutated genes, only the top 20 highest odds 
ratio of mutated genes with a p-value < 0.05 
were retained. OR was calculated as such: 

 
𝑜𝑑𝑑	𝑟𝑎𝑡𝑖𝑜𝑠	 = 	

3 4	⁄
7
8	9

  Eq. 9 

 
where: 
 
a = frequency of mutation in metastatic 
prostate cancer 
c = total number of mutations in metastatic 
prostate cancer 
b = frequency of mutation in primary 
prostate cancer 
d = total number of mutations in primary 
prostate cancer 
 
 
2.6  Protein-Protein Interaction 
prediction using STRING 

 
Protein-Protein Interaction (PPI) 

prediction using STRING (https://string-
db.org/) was employed to see whether two 
proteins may interact. STRING measures 
both direct (physical) and indirect 
(functional) interactions between two 
proteins, based on experimental data of 
protein-protein interactions (22).  

A score is provided for each protein-
protein association. The scores represent 
confidence scores, ranging from 0 to 1, 
indicating estimated likelihood that the 
association is biologically significant, 
given the supporting evidence (22). The 
supporting evidence is based on seven 
factors, which are neighbourhood in 
genome, gene fusions, co-occurrence 
across genomes, co-expression, experi-
mental/biochemical data, association in 
curated databases and co-mentioned in 
PubMed abstracts (22). These factors are 

represented by colour coded edges. Based 
on the seven factors, a combined and final 
confidence score is computed. A good 
interaction should not only have a high 
combined score, but also have more than 
one factor contributing to the score.  
 
Predictive model 
 
2.7.1 Training set 

 
The training set here contains the mRNA 

expression of MPC and PCa patients 
containing 26 genes identified in the 
previous phase.  

 
2.7.2 Random Forest classification 
algorithm 
 

Random forest is a technique for 
classification based on an ensemble, or 
forest, of decision tree. As the name 
suggests, a prediction will be made using 
tree-based algorithm method by 
constructing a forest from the production of 
several or large number of trees (known as 
decision trees) (23). The trees were built 
using training sets consisting of multiple 
features or variables for each of the 
instances in the training set. Then, output 
results were produced from the variables of 
the training set of interest. The result was 
obtained by aggregating all the outputs 
from different trees. There are two stages in 
Random Forest which are: (i) random forest 
creation and (ii) prediction from the random 
forest classifier created in the first stage 
(23).  

Firstly, the algorithm will build m 
amount of decision trees. Each of the 
decision trees will be initiated with a single 
node where a number of randomly selected 
samples will serve as the data set. Then, a 
bootstrap sample of n number of variables 
of the training data was drawn and selected 
at random. From the random selected 
subset, the variable that provides the best 
split, measured using the Gini index, will 
split the node into two daughter nodes, 
specifying possible outcomes (23). The tree 
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was further split until a maximum size is 
reached without pruning. Gini index (S) is 
calculated as follows: 

 
Gini (S) = 1- ∑ 𝑃:; 							Eq. 10 

 
Where P is the relative frequency of class j 
in S. Each time, the split then was divided 
into two subsets of S1 and S2 in which gini 
(S) data was divided into: 
Ginisplit (S) = -!

-
 gini (S1) + -:

-
 gini (S2)

         Eq. 11 
 

This process will repeat until the tree has 
reached a specified number of branches and 
is assigned a terminal leaf node. At the end 
of the tree, class probability will be 
calculated. In this study, m was set at 100, 
and n was set as the square root of total 
number of variables. The outcome was 
calculated as the mean of class probability 
from each decision trees. The algorithm 
was written in Python and using the scikit-
learn package. 

 
2.7.3 Internal validation 
 

5-fold cross validation was used as 
internal validation. The data was separated 
into five different groups called fold. One 
of the folds will be chosen to represent the 
test set, while the rest were combined to 
serve as training set. Next, the predictive 
model will be fitted into the training set, 
tested on the test set and its performance 
will be calculated. This step will be 
repeated until all five folds have served as 
the test set.  

 
2.7.4 Performance measure 
 

The predictive model built by random 
forest algorithm was evaluated based on its 
specificity and sensitivity. Sensitivity 
evaluates the ability of the predictive model 
to predict true positive values. Meanwhile, 
specificity measures the ability of the 
predictive model to predict the true 

negative value. The formula to calculate 
both sensitivity and specificity as follows: 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = %(<#	=.>)%?#>

%(<#	=.>)%)?#>@$3">#	-#*3%)?#>
   

Eq. 12 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
	 %(<#	-#*3%)?#>
%(<#	-#*3%)?#>@$3">#	=.>)%)?#>

  

Eq. 13 

3.0 Results 
 

3.1  PCA profile of mRNA expression 
of PCa and MPC 
 

The mRNA variables were reduced from 
16,384 to 26 using feature selection to 
reduce overfitting, complexity and the 
curse of dimensionality. Table 3 shows the 
summary of the 26 genes used in the PCA. 
The data were then subjected to PCA, 
where PC1 and PC2 were plotted (see 
Figure 2) as it contains the most 
information. 

From Figure 2 and Table 2, several 
observations can be made. Firstly, there is a 
clear separation between MPC and PCa 
from the PCA plot. This suggests that MPC 
and PCa could be differentiated by looking 
at their mRNA expression of the 26 genes 
collectively. Secondly, several genes listed 
in Table 2 are differentially expressed in 
certain malignancies. One of them, BOP1, 
can be linked to PCa. BOP1 is one of the 
important components for synthesis of the 
60S ribosome and maturation of 5.8S and 
20S ribosomal RNAs. Mutation and 
increase of BOP1 expression was 
demonstrated to lead to aggressive prostate 
cancer and reduction in patient overall 
survival (30). Another gene, FAM47E 
promotes the histone methylation by 
localizing arginine methyltransferase 
PRMT5 to chromatin. To date, literature 
support that links it to cancer is currently 
limited. However, a member of its family, 
FAM13C has been shown to be potential 
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prognostic marker in prostate cancer (37). 
Several of the genes are involved in other 
hormone-related cancers such as 
TRAPPC9, PABPC3, PA2G4 and 
NDUFA11, which were linked to breast 
cancer. Thirdly, several of the genes are 

directly or indirectly linked to NF-κB 
signalling pathway, which is involved in 
inflammation, immunity, cell proliferation, 
differentiation and apoptosis. These genes 
include EPN1, TRAPPC9 and RBM23. 

 
 
Table 2: The details of the 26 genes identified through feature selection to construct the PCA 
between PCa and MPC. RFI refers to relative feature importance where a higher value 
indicates a higher importance. A value of 100 indicates that the gene is the most important in 
the group as it had the highest raw feature importance. 

 
Gene Gene name RFI Gene description 

PCDHGA7 Protocadherin 
Gamma-A7 100.0 

PCDHGA7 is a neural cadherin-like cell adhesion protein that play a role 
in specific cell-cell connections in the brain. Down regulation of 
PCDHGA7 gene was expressed in patients with colorectal cancer and 
other members of the PCDH families have been found to suppress 
tumours in certain malignancies where they undergo long-range 
epigenetic silencing by hypermethylation (24). 
 

EPN1 Epsin-1 89.21 

Epsins are ubiquitin-binding adaptor proteins where its overexpression 
leads to sustained NF-κB signalling, where in breast cancer leads to 
metastasis and epithelial mesenchymal transition (EMT) (25). Tumour 
growth and progression are reduced in cases of loss of function of this 
gene in certain malignancies (26).  

NBPF10 
Neuroblastoma 

Breakpoint Family 
Member 10 

82.80 

NBPF10 gene is a member of the neuroblastoma breakpoint family 
(NBPF). Altered expression of some gene family members is associated 
with several types of cancer, although its role is not fully understood. 
 

DROSHA 
Drosha 

Ribonuclease III 
 

69.70 

DROSHA plays an important role as a catalyst for the initial processing 
step of microRNA (miRNA) synthesis. Somatic mutations of DROSHA 
have been observed in human patients with kidney cancer where it 
impairs the expression of tumour suppressing miRNAs such as MYCN, 
LIN28 and other oncogenes (27).  
 

PCDHGA11 Protocadherin 
Gamma-A11 65.69 

PCDHGA11 is a neural cadherin-like cell adhesion protein that play a 
role in specific cell-cell connections in the brain. Members of the PCDH 
families have been found to suppress tumours in certain malignancies 
where they undergo long-range epigenetic silencing by hypermethylation 
(24). 

PPM1J Protein Phosphatase 
1J 60.56 

PPM1J gene plays a role in the catalytic activity to release phosphate 
from O-phospho-L-seryl-(protein). The function of this gene is not yet 
fully understood. 

SFT2D3 
SFT2 Domain-

Containing Protein 3 
 

52.20 
This gene is involved in the fusion mechanism of transport vesicles that 
forms from the endocytic compartment with the Golgi complex. The 
function of this gene is not yet fully understood.  

TRAPPC9 

Trafficking Protein 
Particle Complex 

Subunit 9 
 

50.31 

This protein plays a role in the transportation of intra-Golgi and tethering 
of Golgi vesicle and also the activation of NF-κB signalling pathway. 
Mutation of this gene has been reported in colon and breast cancer (28). 

ZC3H14 
Zinc Finger CCCH-
Type Containing 14 

 
43.64 

ZC3H14 is a gene that is encoded for a poly(A)-binding protein call the 
Zinc finger CCCH domain-containing protein 14. This protein plays a 
role in the control of the poly(A) tail length, mRNA stability, nuclear 
export, and translation. The role of ZC3H14 in cancer is not yet 
established but a member of its family, ZNF711 are closely associated 
with ER and HER2 expression. This suggests that ZNF711 is a predictor 
of poor prognosis in breast cancer (29).  

BOP1 BOP1 Ribosomal 
Biogenesis Factor 43.20 BOP1 is a gene that is encoded for BOP1 ribosome biogenesis protein. 

This protein is one of the important components for synthesis of the 60S 
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 ribosome and maturation of 5.8S and 20S ribosomal RNAs. A recent study 
has found that mutation of the BOP1 gene that causes an increase in the 
BOP1 expression led to aggressive prostate cancer and reduction in patient 
overall survival (30). 

DYX1C1 
Dynein Axonemal 
Assembly Factor 4 

 
41.56 

This gene plays a role in the neuronal migration during the development 
of cerebral neocortex. Genomic alterations of DNAH family members 
have been reported in certain malignancies (31). 

CXorf38 
Chromosome X 
Open Reading 

Frame 38 protein 
41.13 The function of this gene is not yet fully understood. 

IFT122 
Intraflagellar 

transport protein 
122 

38.41 

IFT122 encodes for a member of the WD repeat protein family, which is 
involved in apoptosis, cell cycle progression, gene regulation and signal 
transduction. It is unknown if this gene is involved in cancer 
pathogenesis. 

ITM2B Integral membrane 
protein 2B 35.33 

This protein plays a role in the processing of amyloid-beta A4 precursor 
protein. It helps to inhibit the amyloid-beta peptide aggregation and fibrils 
deposition. The inhibition of  ITM2B transcription has been found to lead 
to the activation of PI3K/Akt signalling pathway, which accelerates 
tumour growth and worsens the prognosis of lung cancer in mice (32). 

MFSD1 

Major facilitator 
superfamily 

domain-containing 
protein 1 

33.98 
MFSD1 gene is encoded for the Major facilitator superfamily domain-
containing protein 1. No information linking this gene to PCa or MPC 
has been found. 

PABPC3 Polyadenylate-
binding protein 3 33.61 

This gene plays a role in the stability and initial translation of mRNA. 
PABPC3 expression have been associated with breast cancer in North 
African population (33). 

PA2G4 
Proliferation-

associated protein 
2G4 

33.48 

This gene plays important role in the ERBB3-regulated signal 
transduction pathway. The ERBB3 is also known as the HERS3 (human 
epidermal growth factor receptor 3). The protein is able to bind and 
interact with the ERBB3 receptor that causes transduction in the 
regulatory signal. Mutation of this gene has been found to have 
association with breast cancer (34). In addition, this gene also plays a role 
either as tumour suppressor or as an oncogene (35). 

PFKL ATP-dependent 6-
phosphofructokinase 33.15 

PFKL helps to catalyse the glycolysis metabolism process by converting 
of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate. The 
degradation of PFKL leads to decreased glycolysis, which proliferation 
and metastasis of hepatocellular carcinoma (HCC) cells (36).  

FAM47E 

Family With 
Sequence Similarity 

47 Member E 
 

32.77 

FAM47E promotes the histone methylation by localizing arginine 
methyltransferase PRMT5 to chromatin. Its role in cancer is not yet 
known. However, a member of its family, FAM13C have been shown to 
be potential prognostic marker in prostate cancer (37). 

NDUFA11 

NADH 
dehydrogenase 

[ubiquinone] 1 alpha 
subcomplex subunit 

11 

32.75 

This protein is a subunit of membrane-bound mitochondrial complex I. It 
plays a role in the mitochondrial electron transport chain. Silencing of 
NDUFA11 was found to increase oxygen consumption rate of breast 
cancer cells, as well downregulate expression of IL-6, IL-8, CXCL1, and 
CXCL3 (38). These lead to tumour metastasis and macrophage 
infiltration.  

RBM23 Probable RNA-
binding protein 23 31.90 

RBM23 is a gene encoded for the Probable RNA-binding protein 23 
which is a part of the U2AF-like family of RNA binding proteins. The 
RNA binding protein can act as the pre-mRNA splicing factor and as 
well as a transcription coactivator. In HCC, RBM23was found to 
promote the angiogenesis via the NF-κB signaling pathway (39). 

WBSCR22 

BUD23 rRNA 
methyltransferase 

and ribosome 
maturation factor 

 

31.23 

This gene has many roles such as it involves in the pre-rRNA processing 
steps to form small-subunit rRNA, biogenesis end export of the 40S 
ribosomal subunit, as steroid receptor coactivator, as maintenance of 
open chromatin and lastly as maintenance of demethylation on histone. 
Its role in cancer in unknown. 

SCAF11 

SR-Related CTD 
Associated Factor 

11 
 

30.86 

The role of SCAF11 is unclear. However, a member of its family, SCAF1 
is involved in pre-mRNA splicing and interacts with RNA polymerase II 
polypeptide A, specifically at the CTD domain. Overexpression of 
SCAF1 has been found in breast and ovarian tumours 40. 

CENPI Centromere protein 
I 30.76 

CENPI is a gene that encodes centromere protein I, which is a part of the 
component of the CENPA-NAC (nucleosome-associated) complex. The 
complex is crucial in chromosome segregation and alignment, ensuring 
proper mitotic process. CENPI is overexpressed in colorectal cancer as it 
regulates cell invasion and migration (41). 
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MAP2K2 
Mitogen-Activated 

Protein Kinase 
Kinase 2  

30.75 

MAP2K2 is a part of the MAP kinase kinase family and plays a role in 
the mitogen growth factor signal transduction. Mutation of MEK2 has 
been found to be associated with cancer and drug that limits MAP2K2 
has been developed to treat cancer patient (42)  

NCAPG2 Condensin-2 
complex subunit G2 30.36 

NCAPG2 is involved in cell proliferation by regulating the G2/M phase. 
Its overexpression has been reported in Non-Small Cell Lung Carcinoma, 
leading to tumour cell growth (43). 

 
 
 

 
 
Figure 2: The PCA plot of MPC (labelled metastasis) and PCa (labelled primary) based on 
mRNA gene expression of selected 26 genes. 
 
3.2 Odds ratio profile of gene 
mutation of MPC 

 
Table 3 shows the top 20 significantly 

mutated genes in MPC, compared to PCa. 
A high odds ratio indicates that the gene 
mutation is more prominent in MPC than 
PCa. Several observations can be made 
from the OR of MPC. Firstly, AR was the 
second highest significantly mutated gene 
in MPC. Several studies have demonstrated 
that gain-of-function mutations and gene 
amplification of AR take place in adapting 
to the low androgen level (44). 
Additionally, AR co-activators such as 

TRIM24 are also upregulated, where 
collectively these events may restore the 
AR signalling pathway after ADT treatment 
and hence leading to MPC (44).  

 Secondly, several genes associated with 
cancers are also listed in Table 3 such as 
IGSF8, NKX2-5, GLUD2, GRWDI, 
TRIM32 and TSPYL2. However, the 
involvement of these genes in PCa or MPC 
is not yet known. Lastly, similar to the 
previous section, several of the genes can 
be found to be directly or indirectly linked 
to the NF-κB signalling pathway such as 
CD74 and TRIM40.   
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Table 3: Details of the top 20 mutated genes of MPC. 

 
Gene Gene Name Odd 

radio Gene description 

ZDHHC20P1 

zinc finger 
DHHC-type 

containing 20 
pseudogene 1 

51.82 The function of this gene is not known 

AR Androgen 
receptor 36.31 

Several studies have demonstrated that gain-of-function mutations and gene 
amplification of AR take place in adapting to the low androgen level. 
Additionally, AR co-activators such as TRIM24 are also upregulated, where 
collectively these events may restore the AR signalling pathway after ADT 
treatment and hence leading to MPC (44).  
 

FBXO24 F-box only 
protein 24 34.01 

This gene is a part of the F-box protein member family that function in 
phosphorylation-dependent ubiquitination. FBXO24, by mediating 
ubiquitin-dependent proteasomal degradation, is involved in the regulation 
of cell proliferation (45). Its role in cancer pathogenesis is not clear. 

HIST1H3PS1 
H3 Clustered 

Histone 9, 
Pseudogene 

30.77 HIST1H3PS1is a pseudogene where its role is unclear. 

CD74 CD74 Molecule 
 24.29 

CD74 is a gene encoded for the HLA class II histocompatibility antigen 
gamma chain. This protein plays important role in the MHC class II 
antigen process by acting as the binding site for cytokine migration 
inhibitory factor (MIF). CD74 was found to be associated with Mucinous 
Lung Adenocarcinoma, and related to NF-κB Signaling and Innate 
Immune System pathways (46). 

CEL Carboxyl ester 
lipase protein 24.29 

This protein plays important role in the absorption and hydrolysis of the 
cholesterol and lipid-soluble vitamin ester. Recent studies have found that 
mutation of this gene in pancreatic disease (47).  

IGSF8 

Immunoglobulin 
superfamily 
member 8 

protein 

24.29 

This protein plays many roles such as to regulate proliferation and 
differentiation of keratinocytes, cell motility, and the neurite outgrowth 
and maintenance of the neural network. IGSF8 may negatively regulate 
TGF-β signaling which can lead to invasion and metastasis of cancer cells 
(48). 

MAMDC4 
Apical 

endosomal 
glycoprotein 

24.29 This protein plays a role in the managing the receptors and ligand selective 
transport on polarised epithelial. Its role in cancer is unknown.  

MICF 

MHC Class I 
Polypeptide-

Related 
Sequence F 

(Pseudogene) 

24.29 MICF is a pseudogene and its function is not known. 

NKX2-5 Homeobox 
protein Nkx-2.5 24.29 

This protein plays an important function in the heart and spleen 
development and few studies have found that mutation of this gene is 
associated with heart disease. NKX2.5 has been found to be expressed in 
several malignancies such as ovarian yolk sac,  papillary thyroid 
carcinoma, skin squamous cell carcinoma tumor and pediatric acute 
lymphoblastic leukemia (49).  

GLUD2 
Glutamate 

dehydrogenase 
2 

22.67 
It plays important role in the recycling of the glutamate neurotransmitter. 
A study has found that mutation of the gene has been expressed in cancer 
patients and other human disorders (50). 

S1PR3 
Sphingosine 1-

phosphate 
receptor 3 

22.67 
This protein might play a role in the cell proliferation and help in the 
suppression of apoptosis.  

KRTAP13-3 
keratin-

associated 
protein 13-3 

21.05 

KRTAP13-3 can be found in the hair cortex, forming a rigid and resistant 
hair shaft. The role of KRTAP13-3 in cancer is unknown. However, a 
member of its family, KRTAP13-2 was found to be significantly 
overexpressed in prostate cancer through bioinformatics approaches (51). 

GRWD1 

Glutamate-rich 
WD repeat-
containing 
protein 1 

21.05 
It plays a role in the ribosome biogenesis and histone methylation. A 
recent study has found that overexpression of this gene increases the risk 
of oncogenesis (52). 

RP11-
386P4.1 

Antisense 
RP11-386P4.1 21.05 RP11-386P4.1 is an antisense gene. No further information is currently 

available 
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TRIM32 Tripartite Motif 
containing 32 21.05 

This protein is a member of the tripartite Motif (TRIM) family that plays 
many roles that include differentiation, muscle physiology and 
regeneration, and tumour suppression. A study has found out the mutation 
of this gene has an association with hepatocarcinogenesis (53). 

TSPYL2 
Testis-specific 
Y-encoded-like 

protein 2 
21.05 

This gene plays a role in modulating the gene expression and inhibiting 
cell proliferation. In addition, a study found that the mutation of this gene 
is associated with oncogenesis by acting as a proto-oncogene and a tumour 
suppressor gene (54). 

TRIM40 Tripartite Motif 
Containing 40 20.64 

TRIM40 is a member of the TRIM family. This protein plays important role 
in the innate response. TRIM40 was found to inhibit NF-κB activity via 
neddylation of IKKγ, which prevents inflammation-associated 
carcinogenesis in the gastrointestinal tract (55). 

ACAD8 

Acyl-CoA 
Dehydrogenase 
Family Member 

8 

19.43 ACAD8 plays a role in catalysing the metabolism of dehydrogenation of 
acyl-CoA derivative.  

C16orf71 

Dynein 
Axonemal 
Assembly 

Factor 8 protein 

19.43 This protein is required for the deployment of outer dynein arm to 
axoneme in ciliated cells. Its role in cancer is not known.  

 
 
 
3.3 PPI predictions of all genes 
identified  
 

The result of the PPI can be seen in 
Figure 3 when all 26 genes from the mRNA 
expression and 20 top mutated genes were 
analysed. Two main interactions can be 
seen from Figure 3 where the first involved 
AR, PAG24, BOP1 and GRWD1. AR is 
connected to PAG24 whereas potential 
interaction exists between PAG24, BOP1 
and GRWD1. PAG24 is a corepressor of 
AR and regulated by ERBB3 ligand 
neuregulin-1/heregulin (HRG). Over 300 
coregulator of AR have been identified and 
they can either be a co-activator or co-
repressor of AR. The coregulator can 
modify AR enzymatically and other 
components such as transcriptional 
proteins, histones or other coregulators. 
These can lead to the initiation of cellular 
processes such as invasion and 
proliferation, which drive tumour 
progression. BOP1 and GRWD1 genes 
have a similar function where they play a 
role in ribosomal biosynthesis. Vellky et al., 
(30) studied the expression of BOP1 in 
different stages of PCa and found that it is 

overexpressed in MPC and recurrent PCa. 
Additionally, the expression was inversely 
correlated with overall survival. 
Knockdown of BOP1 showed a decrease in 
proliferation and motility. The knockdown 
of GRWD1 also inhibits cell proliferation, 
invasion and migration, and induced cell 
cycle arrest but in colon carcinoma (56).  

The second interaction from Figure 3 
involves NBPF10, PABPC3 and ZC3H14. 
Both PABPC3 and ZC3H14 have similar 
function, which is to control and maintain 
the stability of mRNA strand. 
PABPC3 expression has been associated 
with breast cancer in North African 
population (57). The role of ZC3H14 in 
cancer is not yet established but a member 
of its family, ZNF711 has been shown to be 
closely associated with ER and HER2 
expression. This suggests that ZNF711 is a 
predictor of poor prognosis in breast cancer 
(29). NBPF10 is a member of the 
neuroblastoma breakpoint family (NBPF). 
Altered expression of NBPF family 
members has been associated with several 
types of cancer, although its role is not fully 
understood. 

 
 
 
 



Ahmad Fajri et al./Int. J. Pharm. Nutraceut. Cosmet. Sci. (2022) Vol 5(1) 48-66 
 

60 
 

 
Figure 3: Protein-Protein Interaction of genes identified in this study. For purpose of clarity, 
only genes that were connected to another gene were shown here. Abbreviations: NBPF10: 
Neuroblastoma Breakpoint Family Member 10; PABPC3: Polyadenylate-binding protein 3; 
ZC3H14: Zinc Finger CCCH-Type Containing 14; AR: Androgen Receptor; PA2G4: 
Proliferation-associated protein 2G4; BOP1: BOP1 Ribosomal Biogenesis Factor; GRWD1: 
Glutamate-rich WD repeat-containing protein 1 
 
3.4  Predictive model based on mRNA 
gene expression 

 
Table 4 shows the internal validation of 

the predictive model built using the mRNA 
expression of the 26 genes previously 
mentioned between PCa and MPC patients. 
The model showed very low specificity 
(0.017) and good sensitivity (0.616). The 
predictive model generated 162 true 
positive (TP) results which means that 162 
MPC patients were correctly identified. The 
predictive model was also only able to 
correctly identify 2 PCa patients which is 
the true negative result (TN). While 
importance is placed on sensitivity over 
specificity, further improvements involving 
more data needs to be made to increase the 
specificity rate. 

 
3.5 Decision tree of mRNA gene 
expression 
 

Figure 4 shows an example of a single 
decision tree in a random forest. Note that 
this is only an example of single decision 
tree, and a random forest contains hundreds 
of predictive trees (this is set at 100 in the 
current model). Here, the gene BOP1 is at 
the root node (uppermost node) of the 

decision tree, which is the most important 
feature for that decision tree. Gini value 
indicates probability of misclassifying an 
instance and a lower value indicates a better 
split. Value indicates the number of data 
sampled at particular node. This predictive 
tree differentiates between MPC and PCa 
based on the BOP1 expression. If the z-
score of BOP1 is equal or less than 6.84, it 
will be classified as primary prostate 
cancer. If the BOP1 expression is higher 
than 6.84, it will be classified as metastatic 
prostate cancer. As both nodes have a value 
of 0, it is a terminal node.  

 
4.0 Discussion 

 
Based on the result of this study, a few 

key findings can be further discussed. 
Firstly, mRNA gene expression of 26 genes 
identified through feature selection can be 
used to differentiate between PCa and 
MPC. This is evident from the clear 
separation observed in the PCA as well as 
good sensitivity in the prediction model. 
The results of the prediction model should 
be further improved by incorporating more 
data and externally validated in order to 
provide a clearer picture on whether a 
predictive model would be feasible in the 
future as a diagnostic tool.  
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Table 4: Cross validation results of the predictive model of mRNA gene expression between 
PCa and MPC. Abbreviation: TP: True Positive; FP: False Positive; TN: True Negative; FN: 
False Positive 

TP FP TN FN Sensitivity Specificity 

162 115 2 101 0.616 0.017 

 
 
 
 

 
 
 

Figure 4: One of the decision trees of the random forest generated in the study. Here, the 
most important feature is the gene BOP1. Primary refers to PCa and Metastasis refers to 
MPC. 

 
Secondly, this study highlights potential 

pathway of MPC involving the mutation of 
AR, which may be driven by coactivators 
such as PAG24. PAG24 is an established 
corepressor of AR, however, its involvement in 
the pathogenesis of PCa and MPC has not 
been studied. Several coregulators of AR 
have been well studied such as SRC1-3 (58, 
59), These proteins bind to the amino-terminal 
domain (NTD) of AR, thereby prompting its 
transactivation directly through histone 
acetyltansferase activity and indirectly 
through recruitment of secondary 
coactivators to stimulate chromatin re-
modelling (59). Several small molecule 
inhibitors (60) as well as peptides (61) have 
been developed to target AR coregulators 
for CPRC. Hence, PAG24 could be a 

potential target for MPC and future studies 
should investigate this. BOP1and GRWD1 
were predicted to interact with PAG24 
where the former is overexpressed in 
different stages of PCa. The expression of 
GRWD1 has not been analysed in PCa, but 
it is overexpressed in colon carcinoma. The 
knockdown of both genes was shown to 
reduce the expression of cancer phenotypes 
such as cell proliferation, migration and 
invasion.  

Thirdly, the result of this study suggests 
that a potential crosstalk may exist between 
androgen and NF-κB signalling pathways. 
This is due to several genes from Tables 2 
and 3 being found to directly or indirectly 
affecting the NF-κB signalling pathway 
such as TRIM40, EPN1 and RBM23. NF-
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κB signalling pathway is involved in 
inflammation, immunity, cell proliferation, 
differentiation and apoptosis. The pathway 
is altered in both hematopoietic and solid 
malignancies, which promotes the 
proliferation and survival of tumour cells. 
Malinen et al., (62) have demonstrated that 
simultaneous pro-inflammatory and 
androgen signalling are able to significantly 
reprogram NF-κB and AR cistromes. 
Modulation of both cistromes may lead to 
the progression of PCa.  TRIM40 is a 
member of the TRIM family and plays an 
important role in the innate response. 
TRIM40 was found to inhibit NF-κB 
activity via neddylation of IKKγ, which 
prevents inflammation-associated carcino-
genesis in the gastrointestinal tract (55). 
While dysregulation of AR signalling is the 
initial driver of PCa, the pathway does not 
function in isolation. Crosstalk between 
androgen signalling and other pathways has 
been demonstrated to be a potential avenue 
that drives PCa progression. Several 
intracellular kinases such as SRC, MAPK, 
PI3K/AKT and ERK1/2 are downstream 
regulators of nongenomic AR signalling. 
This mediates a proliferation response and 
potentially driving PCa progression. 
Furthermore, several cell surface receptors 
such as interleukin (IL)-6, IL-8, EGFR, 
IGF-1 and HER2/NEU were implicated in 
the cross talk with AR to either sensitize AR 
at sub-physiological androgen concentrations 
or drive ligand independent signalling. One 
of the surface receptors mentioned, HER2, 
is implicated in breast cancer where it may 
be overexpressed leading to proliferation of 
cancer cells. Several genes in Tables 2 and 
3 have been connected to breast cancer such 
as PABPC3 and PA2G4. The similarities 
between breast and prostate cancer have 
been explored where it has been shown that 
males who have female family members 
with a history of breast cancer are at a 
higher chance of developing prostate 
cancer. Follow-up studies have shown that 
both cancers share the same mutations such 
as BRCA1, and BRCA2. Recently, 

Olaparib which was originally prescribed 
for breast cancer has been approved as 
treatment for prostate cancer. Hence, the 
genes PABPC3 and PA2G4 should be 
further validated and the similarities 
between the two cancers should be further 
explored.  
 
5.0 Conclusion 

 
In this study, unsupervised and 

supervised machine learning methods were 
employed to differentiate the genetic 
landscape between PCa and MPC. Several 
findings can be deduced, which were: (i) 
mRNA expression can be used to 
differentiate between PCa and MPC, (ii) the 
AR-PAG24-BOP1- GRWD1 axis should 
be investigated further as both potential 
biomarkers and as well as potential 
pathways in MPC progression and (iii) 
androgen signalling pathway may crosstalk 
with NF-κB signalling pathway and breast 
cancer pathway. Future studies should 
include experimental validation of the 
genes identified here, as well as using more 
data in the predictive model. One limitation 
of this study is that a general mutation 
analysis using odds ratio was performed. A 
detailed analysis incorporating the type of 
mutation as well as its location would 
provide more information. Nevertheless, as 
this is a preliminary study, the results 
shown were corroborated by scientific 
literature and could serve as the foundation 
for future studies.    
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